
BatterBot: A Case Study in Trajectory Optimization
for Nonprehensile Manipulation

1st Yajvan Ravan
EECS

Massachusetts Institute of Technology
Cambridge, USA
yravan@mit.edu

2nd Felix Huang
EECS

Massachusetts Institute of Technology
Cambridge, USA
fhuang25@mit.edu

3rd Stephen Hong
EECS

Massachusetts Institute of Technology
Cambridge, USA
sshong@mit.edu

Abstract—Baseball is a highly dynamic and complex sport that
is difficult to play, even for humans. This project aims to isolate
and investigate the actions of pitching and hitting into a robotic
setting, utilizing the lessons and material covered in 6.4210
Robotic Manipulation. Specifically, this project implements a
system consisting of two robotic arms, one that tosses baseballs
and one that swings a bat, to perform the pitch and hit actions
in simulation. Through various trajectory optimization methods,
we evaluate the nuances and tradeoffs involved in throwing and
hitting a ball with a robot. We implement inverse kinematics
motion planning as well as two different types of kinematic
trajectory optimization. We demonstrate an iterative method to
use initial guesses to solve these optimizations in the complex
joint space of this problem. We find that BatterBot can pitch with
60% accuracy within the strike zone from 8 m away, and has less
than 5mm of batting error at bat speeds less than 4m/s. Both
the batter and pitcher use the same optimization frameworks
and parameters, indicating the promise of such techniques for
nonprehensile manipulation.

I. INTRODUCTION

Robotic systems that are reactive to objects in motion have
become increasingly relevant as we attempt to implement
robots into scenarios that are dynamic, uncertain, and as robust
as possible. Two such scenarios that fall into this category are
hitting an aerial projectile in motion and predictably tossing
an aerial projectile. The robotic system must react to the
trajectory of the incoming projectile to estimate where the
projectile will end up to accurately hit it. Both tasks involve
significant challenges in inverse kinematics, as in addition
to controlling position, we also must control the velocity
of the projectile for both tasks. Currently, there is limited
research done in the field of hitting aerial objects in motion.
In this project, we hope to explore this field and gain insight
into the tasks of dynamic object perception and hitting aerial
projectiles.

Our system, BatterBot, simulates a simplified game of
baseball in which one robot arm pitches the ball and another
robot bats the ball. To pitch the baseball, the pitcher robot
chooses a randomly desired position within the ”strike zone”
and calculates and executes a trajectory that can be generated,
within robot constraints, to aim for that position. To bat the
ball, the batter robot uses knowledge of the initial position
and velocity of the ball and determines a trajectory to meet
the ball at a desired position with the desired velocity.

Thus, we hypothesize that by using just position and ve-
locity, we can determine the optimal trajectory to throw a
ball and also determine the optimal point of contact for the
bat to collide with the ball. The goals of our design are as
follows. First, we want to minimize the error on any given
throw by measuring the magnitude of the distance between the
ball’s position before the bat swing to the desired strike zone
area. Second, we want to minimize the error on any given bat
swing by calculating the magnitude of distance between the
simulated bat swing and the desired bat swing position. This
allows us to assess the performance of our Batterbot as we
can analyze the performance with binary results (thrown ball
lands in or out of the strike zone; bat makes contact or does not
make contact with the ball) as well as more advanced metrics
that can quantify the percent error based on the magnitude of
distance between real-time and desired positions.

There are several useful applications of a robotic system
capable of hitting moving objects in the air. An obvious
application of BatterBot is a robotic system that can assist
baseball players in practicing without a partner. The pitcher
robot can throw baseballs at a human batter to practice their
swings and the the batter robot can hit baseballs to human
players that want to practice their catching. Furthermore, the
work done to expand our observations of dynamic object
manipulation and the kinematic trajectory optimization needed
to make it predictable applies to any robotic system that
needs to react to external stimuli with high velocity and
predictability. Finally, our work shows the transference of
these techniques between batting and pitching, demonstrating
the robustness of our methods.

II. RELATED WORK

Several prior works discuss approaches for tossing and hit-
ting an object (e.g. ball) with a robotic arm. One of the papers
referenced for this project was the experiment conducted by
Senoo et al. [1] which analyzes the performance of their most
recently developed baseball robots. The paper dives into how
the integration of the system’s components (high-speed hand-
arm, a high-speed bipedal mechanism, and high-speed vision)
allows the robot to perform feedback-based reactive motion
in real time such as catching, batting, throwing, and running.
While the feedback-based reactive motion allows the robot

to move at high speeds, hardware, and control limitations
arose from this study due to the robot experiencing a greater
impact of force at the point of contact, thus having poor shock
absorption. However, aspects of this study such as the high-
speed active vision for tracking dynamic, aerial objects, and
the collision model to determine arm (bat) swing trajectory
were influential in how we designed our robot. It was very
useful to gain an intuitive understanding of the parameters
we must consider when creating a baseball robot and the
drawbacks of certain technical approaches.

Another work referenced for this project was the paper
published by Hsiao et al. [2] which dives deep into the hand-
eye coordination techniques for robots, specifically in the
case of ball-batting. The main focus of this paper centers
around not only making clean contact with the incoming ball
but also directing the rebounding ball to a specific target
location once it leaves the bat. This adds a level to the design
complexity as the robot must calculate the outward trajectory
of its projectile as well. This paper is extremely useful for
our project as the author’s results show that their perception
and deep learning models were capable of having 0% swing-
and-miss error. In our project, we follow the same framework
of a constrained optimization problem where we also aim to
minimize our swing-and-miss error through vision tracking
through perception and decision-making through deep learning
models.

The third paper referenced for this project was authored by
Gardner et al. [3] which expands on a simulated robot arm
that tosses a ball at certain target distances. The paper dives
into the challenges that people without arms face and how
robotic manipulation coupled with deep learning networks can
help alleviate these challenges. By constraining their simulated
robotic arm to have the same properties as a normal human
arm, the researchers made the deep learning algorithm as
realistic as possible to account for possible implementation
in a real-world setting. Through the use of an LSTM, or a
recurrent neural network (RNN) that can learn trends and long-
term dependencies in information over an extended number
of time steps, the researchers were able to achieve a training
accuracy of 97.9% within a circle with a 5cm radius and 58.7%
within a circle with a 1 cm radius when tossing a ball. While
our project focuses on making contact after landing within
our target strike zone, the intuition about tossing accuracy and
trajectory optimization gained from this paper proved useful
for our work.

III. METHODS

In this section, we introduce our methods and iteration
process for each of the components of this system. Detailed
results of intermediate steps are included in the next section.

A. Simulation Environment

To begin the project, we set up our simulation using
PyDrake [4] and used Deepnote as the development pipeline.
We chose these tools as we have become familiar with them
throughout the course. Our simulation includes two Kuka LBR

Fig. 1. Initialization of our simulation setup with the iiwa ”pitching” arm
(left) as well as the iiwa ”batting” arm (right). The red strike zone has no
physical properties and is shown purely for visualization.

iiwa robot arms, each equipped with a Schunk WSG gripper.
The SDF and OBJ files of the iiwas, grippers, and ball are
sourced from Drake. We believe that the joint-torque sensing
and control of the iiwa arm and the simplicity of the Schunk
gripper are suitable for our manipulation task of pitching and
batting a baseball. In our simulation, we generated a baseball
bat using an OBJ file sourced from TurboSquid. The inertial
and geometric properties of the SDFs for these objects had to
be adjusted to fit appropriately into our simulation by scaling
down the size and mass so that it could be handled predictably
by the simple 2-fingered Gripper. In addition, the SDF of the
bat was modified to add an extra link at the handle to allow for
ease of picking up from the ground. We also wrote a custom
SDF for the ground that the ball and the bat rest on and a
strike zone box for visualization. Visualization can be seen in
Fig. 1.

For the custom ground, the strike zone box, and the two
iiwa arms, we fixed their locations in the simulation. These
objects are intended to be stationary so we keep their location
fixed. The ball and the bat are allowed to move freely as they
are to be manipulated in the simulation. Note that the strike
zone box has no physical or collision properties since it is
used for visualization purposes only.

As we mention below, we found it necessary to increase the
friction coefficient on the gripper to prevent slipping of the
ball and bat and make their manipulation more predictable.
Although this doesn’t translate exactly to reality, we can get
similar results through methods such as increasing the torque
on the gripper, changing the gripper material, or changing
the bat/ball material. Thus, increasing the friction coefficient
serves as a quick and approximate heuristic.

B. Pitching

1) Picking: We split the pitching motion into a pick and
then throw. We assume that the arm knows exactly where the
ball is placed. Given this, we define 5 key frames necessary to
execute the pick action, namely the initial pose, a pose above
the ball, a pose around the ball, a post-pick pose above the ball,
and then a goal pose at roughly 0.3 m height. A visualization
can be seen in Fig. 2.

Fig. 2. Depicted here is the gripper picking up the ball. This antipodal grasp
maximizes the contact area between the ball and gripper which allows for a
more secure hold.

Our first method of picking involved generating a trajectory
of poses using linear interpolation between the key frames.
Taking the derivative of this trajectory gives us a trajectory of
spatial velocities. We then used a differential inverse kinematic
(DIK) controller with the equation below:

V W
G = J(q) ∗ q̇ (1)

where q represents the joint angles and V W
G is the spatial ve-

locity. We then convert q̇ to q using integration. This technique
was effective in generating smooth trajectories. However, after
the addition of a second iiwa and more free bodies into our
simulation, computing the Jacobian, i.e. the time derivative
of the forward kinematic function, became computationally
expensive, slowing down the simulation.

Our second approach used optimization-based inverse kine-
matics. In this iteration, we used the 5 key gripper frames and
performed inverse kinematics (IK) for all the poses. Given
that the iiwa has 7 joints, this was a highly unconstrained
environment, with multiple joint angles mapping to the same
pose. However, we wanted to have a relatively clean and
smooth movement, so we chose to penalize the cost between
consecutive points. Furthermore, setting a good initial guess
for the optimization program was important. The first key pose
corresponded to the initial joint angles (q0). To perform IK
for the next pose, we use the joint angles from the previous
computation as the initial guess and repeat until we have all
5. Finally, we linearly interpolate between these 5 points in
joint space to define the trajectory. An example optimization
is depicted below:

min
qPrePick

|qPrePick − qInitial|22
subject to XPrePick = fkin(qPrePick)

(2)

2) Throwing: After executing the pick action, we focus on
throwing the ball at a defined velocity and position in the
world frame. A visualization can be seen in Fig. 3. To simplify
our calculation, we assume that the ball is rigidly fixed to the
gripper. Therefore, we can simply transform the velocity of the
ball into a desired velocity (Vd) and a desired position (pd) of
the gripper. As we talk about below, however, this assumption
is not always true. Using Vd and pd we determine a trajectory
for the gripper as before. However, a key difference here is
the additional velocity constraint compared to picking. Let us
note that such a trajectory has a large number of degrees of
freedom, particularly time and joint angles. Furthermore, this
trajectory must lie within the entire set of positions available to
the robot and must respect hardware velocity and acceleration
constraints.

In our first approach, we imitated the key frame approach
from above. To ensure the velocity of the ball, we first defined
a line of fixed distance, aligned with the direction of Vd, and
positioned the midpoint of the line at pd. We then this line as a
”launchpad” for our gripper, i.e. the gripper starts with velocity
0 at the start of the line and proceeds with constant acceleration
to achieve velocity Vd at pd, and then decelerates, ending with
0 velocity at the end of the line. See Fig. 3 for an example.
Finally, we convert these poses into a trajectory in joint space
using both the DIK controller and the IK approaches as before.
However, this method had numerous issues. Notably, we had
to manually constrain many of the degrees of freedom. In
particular, defining the length of the launchpad, the total time
of the trajectory, and the number of waypoints was necessary
before we could compute the trajectory. In practice, this is
suboptimal, as depending on Vd and joint constraints, certain
times or launchpads were not possible. For example, we found
that for Vd > 20, only launchpad distances of 0.05 m or
smaller were feasible, and in such situations the robot’s jerk
was too large for the ball’s trajectory to be predictable, often
causing the ball to slip out of the grasp.

Given the constraints that had to be manually defined for
the previous approach, we decided to use kinematic trajectory
optimization, modeling the trajectory as a B-spline with 10
control points. The choice of this method was both to minimize
the manual optimization required from above (i.e. choosing
appropriate time and acceleration) and to make an optimization
method that was more generally applicable and minimally
constrained. In order to do this, we began by constraining
the initial pose of the gripper to where the gripper would
be after picking up the ball. Then, we constrain the final
pose to be at pd with an orientation perpendicular to Vd.
The latter constraint is done by aligning the −z-asix of the
gripper with Vd. Finally, to implement the velocity constraint,
we constrain a ”pre-throw” pose. In order to define this
constraint, we needed to fix the duration of the trajectory, T ,
and then we defined the pre-throw pose to be T /100 seconds
before the throw pose. The pre-throw pose is constrained so
that the average velocity between that and the throw pose is
equal to Vd, necessitating that the position is constrained at
pd − T/100 ∗ Vd, and that the rotation be the same. We can

Fig. 3. Visual demonstration of the throwing mechanics of the iiwa ”pitching”
arm throwing the ball. The gripper releases its grasp once the arm has reached
its terminal pose. Also an example of the launchpad method, where the blue
line is the ”launchpad.”

write these constraints (in the world frame) in spatial algebra
notation as follows:

XGripper
initial = XGripper

PickDone

pGripper
Throw = pd

RGripper
Throw (θ) = arccos

(
−k̂ ∗ V⃗d

|Vd|

)

RGripper
Throw (axis) =

(
−k̂ × V⃗d

|Vd|

)

pGripper
PreThrow = pd − T/100 ∗ Vd

RGripper
PreThrow = RGripper

Throw

Finally, we bound the maximum and minimum velocities
and positions of the joints along the entire trajectory with the
iiwa hardware limits. The first objective we chose to minimize
was simply the path length cost. Such optimization led to
convergence less than 1% of the time, due to the highly non-
convex nature of the joint space, as well as discontinuities due
to hardware constraints.

To improve on this, we decided to combine a portion
of the previous approach. Using IK, we can determine the
joint positions at both the initial pose, qinitial, and the throw
pose, qfinal. Ultimately we desired a smooth throw, rather
than sharp changes in the joint angles, so we set the initial
guess of our optimization problem to be a linear interpolation
between qinitial and qfinal. Furthermore, we penalize the
distance between the first control point and qinitial and the

distance between the second control point and qfinal. Thus,
our objective is

minc1,...c10 |c1 − qinitial|22 + |c10 − qfinal|22
Note that the initial guess is a global minimum, however does
not satisfy the constraints, particularly the pre-throw pose. As
a result, the SNOPT algorithm will not be stalled at the initial
guess. This approach was a massive improvement over the
previous one, however, it suffered from significant errors in
the projectile motion of the ball.

Our final version involved a rearrangement of the kine-
matic trajectory optimization problem. Rather than constrain-
ing poses only, we added a velocity constraint, constraining
the gripper to move at speed Vd at the end of the trajectory.
This replaced the pre-throw position constraint, with the one
depicted below:

vWGripper = vd

To improve our results further, we added multiple velocity con-
straints at times 95

100T,
96
100T,

97
100T,

98
100T,

99
100T . This method

gave us the least error in the landing position of the ball and
was also the easiest to optimize.

C. Batting Dynamics

For the batting robot, we use the same optimization methods
as for pitching. Namely, to pick up the bat, we assume a known
position, and use the key frame approach with IK. To swing the
bat, we define a desired swing position and velocity. Notably,
there is no difference between this problem and the problem
of throwing, since we assume that the bat, just like the ball,
is rigidly fixed to the gripper once picked up. In fact, we can
simply write the constraints in terms of the pose of the center
of the bat itself and solve in the same fashion.

The batter takes in a pitch position and velocity and
computes the trajectory of the path. It then picks the position
where the trajectory intersects its ”strike zone” (as defined
by the rules of baseball) and computes a desired velocity
in a direction opposite of the ball’s velocity and twice the
magnitude. It then uses the above to compute a trajectory. A
visualization can be seen in Fig. 4.

D. Trajectory Optimization

Although formulating the trajectory optimizations is rela-
tively simple, the actual mechanics of obtaining a conver-
gent solution are far more complex. The forward kinematics
function of the iiwa is complex and many of the constraints
defined above, particularly the velocities, add another level of
complexity. This, in addition, to the high number of decision
variables and hardware constraints makes the landscape of this
kinematic trajectory optimization extraordinarily nonconvex
and difficult to solve. However, the relative simplicity and
freedom of the optimization, compared to defining a trajectory
with acceleration and time, makes this method incredibly
powerful. We begin our system by optimizing for a pitch
position and velocity that is within reach of the pitcher robot,
choosing to minimize the velocity to limit the strain on the
joints. All of our optimizations are solved with SNOPT [5].

Fig. 4. Visual representation of the iiwa ”batting” arm swinging a baseball
bat. The highlighted red rectangle represents the viable pitch strike zone and
has no physical properties (for visual purposes only).

Fig. 5. Diagram of the trajectory path of the ball leaving the iiwa ”pitching”
arm at the terminal pose.

Our first attempt at solving this trajectory optimization was
to simply start with random initial guesses and repeat until
we obtained a trajectory that converged. Ultimately, this led
to incredibly poor performance, because of the complexity of
the trajectory space, rarely converging before 100 iterations.
This is not feasible in reality.

We attempted to simplify this by locking a number of the
joints, trying combinations of 2-5 joints. However, this often
led to unforeseen restrictions in the joint space that did not
allow us to reach the desired positions. This method is also not
particularly generalizable to other problems or robot models.

Our next approach was to use intelligent initial guesses. We
began by setting the first and last control points to qinitial
and qfinal and then turned to an initial trajectory that was a
linear interpolation between those two. Although this worked
somewhat well, the velocity constraints were not able to be
satisfied most of the time, even after adding random noise.

The final approach combined both of the previous ones
along with tolerance and iterative convergence on an optimal
solution. We begin by allowing a large tolerance on the posi-
tions (0.5 m), orientations (2.5 deg), and velocities (0.05 m/s).
Note that the latter is restricted more since small variations in
velocity can lead to large variations in position that may be
outside of joint constraints. We then set an initial guess using
the linear interpolation and noise described above.

We then half the tolerances and resolve the problem with

Pitch Distance 1 m 2 m 4 m 8 m
Position Constraints Only 0.12m 0.20m 0.33 m 0.76m

Velocity Constraints 0.074m 0.16m 0.25 m 0.57m
% Strikes 100 100 90 60

TABLE I
AVERAGE ERROR FOR 10 TOSSES (5 M/S USING TWO DIFFERENT

METHODS OF KINEMATIC TRAJECTORY OPTIMIZATION

Bat Swing Velocity 0.5 m/s 1 m/s 2 m/s 4 m/s
Position Constraints Only 0.031m 0.077m 0.11 m 0.19m

Velocity Constraints 0.001m 0.0042m 0.013 m 0.022m
% Hits (1 m Pitch) 30 20 40 40

TABLE II
AVERAGE ERROR FOR 10 BAT SWINGS USING TWO DIFFERENT METHODS

OF KINEMATIC TRAJECTORY OPTIMIZATION

the previous solution as an initial guess. We repeat this until
the tolerance is 1 mm, 5e-4 degrees, and 0.1 mm/s. In practice,
this successfully found a solution almost every time, since it
allows for slow convergence to the optimal trajectory.

IV. RESULTS AND DISCUSSION

A. Throwing/Batting Results

Results from testing our system are shown in Tables 1 and 2.
We compare the two different versions of kinematic trajectory
optimization outlined in the methods, namely one only using
position constraints and the other with velocity constraints. An
example of a bat swing is shown in Fig. 6.

We evaluated the average error between the location of the
desired throw in the strike zone and the location of the actual
throw in the strike zone for pitches from distances of 1m, 2m,
4m, and 8m. Testing the average error allows us to quantify
how close the commanded behavior is to the desired robot
behavior. The results show that the pitches are pretty accurate.

Pitch Distance 1 m 2 m 4 m
Velocity Constraints Normal Friction 0.074m 0.16m 0.25 m

Velocity Constraints High Friction 0.022m 0.045m 0.10 m

TABLE III
AVERAGE ERROR FOR 10 PITCHES WITH DIFFERENT FRICTION VALUES

Fig. 6. Example of a bat swing

We model the strike zone with the same dimensions as in
official baseball, and the results indicate 60% strike rate at
8m. For reference, a regular pitch in baseball is thrown from
roughly 19m. Thus, although our system can’t compete with
humans yet, it is substantially accurate.

Similar results are shown for batting in Table 2. Rather than
varying the bat position, as the batting position will be roughly
the same for each swing, we vary the velocity. Increasing
velocity results in increasing acceleration and jerk which is
what causes higher error. Yet, we note that the variation in the
bat position is significantly smaller than the pitch position. The
difference most likely comes from a small error in orientation.
For the task of batting, such orientation errors are unimportant
since the bat is spherical, but for pitching, using the same
motion planning framework results in significantly higher
errors. Such error can likely be partially mitigated through
continued iterations of low-tolerance motion planning.

Another key source of error comes from friction. We ob-
served that near the end of a pitch, i.e. during moments of high
acceleration, the ball slipped from the gripper, violating our
assumption that the two were rigidly fixed during the throw.
This was a significant source of error, as shown in Table 3.
We increased the coefficients of friction on the ball and the
gripper by a factor of 10, drastically decreasing the error.

A third source of error comes from gripper release dynam-
ics. We constrained the gripper to open just before the throw
at time 99

100T , where T was the length of the trajectory. Due
to large contact forces between the ball and the gripper, the
effect of friction on throws was unpredictable.

A key implicit result in our work is the use of the same
motion planning framework for both tasks. It is not readily
obvious that batting and throwing a ball would be similar
tasks for the robot to solve, however, our results showed that
we could optimize a batting trajectory in the same way as
the pitching. Thus our optimization framework and iterated
convergence show promise to transfer to other manipulation
tasks as well.

B. Use Cases

Our project has several useful applications, one of which is
a robotic system that helps baseball players practice without
a partner. A player working on their batting can practice with
the pitcher arm and a player working on their catching can
practice with the batter arm. This system can also be applied
to other bat-ball sports with minor adjustments.

A key capability of our system is accurately tossing objects,
which can be applied to many use cases. For example, the
pitching robot can be used for sorting objects in factories and
waste processing plants. It can also be used to increase pick-
and-place efficiency, such as in the agriculture setting to toss
seeds to increase sowing efficiency.

C. Limitations

One key limitation in our system is the use of privileged
state information not available in the real world. Our robots are
aware of the locations of their respective objects. Furthermore,

the batter is aware of the pitch trajectory. In the real world,
such information is not available, and estimation of the pitch
trajectory would have to be visual. One possible algorithm
could be using an RGBD camera and generating a 3D point
cloud. With one frame, we would likely be able to estimate the
position of the ball’s center, and with two, we would likely be
able to estimate its velocity. This would also likely improve
the hit rate of bat swings in simulation. Currently, error in
the pitch trajectory causes missed swings, but real-time pose
estimation would likely overcome that issue.

Another key limitation is the physics modeling. As men-
tioned above, we increased the friction coefficients to improve
consistency, but in real life, this would have to be done by
increasing the strength of the grip or changing the material
of the gripper. However, the physics of that are still signif-
icantly complex, and not entirely predictable in our current
framework.

D. Future Work
There are many avenues of future work to extend our current

framework. One such path involves the implementation of the
visual pose estimation mentioned above. One can even imagine
a system with 2 RGB-D cameras for increased accuracy.
Another avenue involves exploring the dynamics of friction.
Although we were primarily focused on trajectory optimiza-
tion, modeling the gripper friction and release dynamics is
a complex problem in itself, and advancements there would
drastically improve our accuracy. A third future avenue we
see is testing this trajectory optimization framework for other
nonprehensile manipulation tasks, such as pushing a chair
or rolling a ball. Although in this situation the framework
transferred readily between tasks, it is not obvious that it will
be as effective for other nonprehensile manipulation scenarios.

V. CONCLUSION

BatterBot is a robotic system that has the capability of
pitching and hitting baseballs in simulation. We implement
both of these capabilities through the use of kinematic tra-
jectory optimization. We use an optimization framework that
makes smart initial guesses and iteratively converges on a
solution to successfully navigate a highly unconstrained non-
convex joint space. We evaluate the error of our system by
pitching and swinging from different distances and velocities.
Compared to other motion planning methods, our framework
demonstrates high guarantees of finding a solution, albeit
at the cost of increased computation time. Our framework
readily transfers between the tasks both for picking up objects
and moving at desired velocities and positions. However, our
system makes use of privileged state information to preplan
its motion, making it difficult to transfer to the real world
currently. However, future work would involve adding visual
pitch estimation and potentially more accurate models of
gripper dynamics to decrease the sim2real gap.

VI. TEAM ACKNOWLEDGEMENTS

Thank you to Professor Tedrake, Elena Kalodner-Martin,
and the 6.4210 Teaching Staff for working with us this

semester. For this project, Yajvan worked on kinematic tra-
jectory optimization, Felix worked on kinematic trajectory
optimization and grasping mechanics, and Stephen worked on
IK trajectory optimization and simulation.

REFERENCES

[1] T. Senoo and I. Ishii, “Baseball robots based on sensory-motor integra-
tion,” in 2021 21st International Conference on Control, Automation and
Systems (ICCAS), 2021, pp. 1772–1777.

[2] T. Hsiao and S. Wu, “Decision making based on physical and neural
network models for precision ball-batting robots,” in 2021 American
Control Conference, ACC 2021, ser. Proceedings of the American Control
Conference. United States: Institute of Electrical and Electronics
Engineers Inc., May 2021, pp. 3787–3792, publisher Copyright: ©
2021 American Automatic Control Council.; 2021 American Control
Conference, ACC 2021 ; Conference date: 25-05-2021 Through 28-05-
2021.

[3] A. Gardner and K. Rahnamai, “Robot trajectory target delivery using
machine learning,” 08 2020, pp. 93–96.

[4] R. Tedrake and the Drake Development Team, “Drake: Model-
based design and verification for robotics,” 2019. [Online]. Available:
https://drake.mit.edu

[5] P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm
for large-scale constrained optimization.” SIAM J. Optimization,
vol. 12, no. 4, pp. 979–1006, 2002. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/siamjo/siamjo12.html#GillMS02

https://drake.mit.edu
http://dblp.uni-trier.de/db/journals/siamjo/siamjo12.html#GillMS02
http://dblp.uni-trier.de/db/journals/siamjo/siamjo12.html#GillMS02

	Introduction
	Related Work
	Methods
	Simulation Environment
	Pitching
	Picking
	Throwing

	Batting Dynamics
	Trajectory Optimization

	Results and Discussion
	Throwing/Batting Results
	Use Cases
	Limitations
	Future Work

	Conclusion
	Team Acknowledgements
	References

