

Mir

6.4210 Robotic Manipulation Final Project

BatterBot: A Case Study in Trajectory Optimization for Nonprehensile Manipulation

Felix Huang, Stephen Hong, Yajvan Ravan

Why Baseball?

- Classic (& Favorite) Sport
- Interesting Manipulation Tasks
 - Pitching
 - Batting

- Limited literature on nonprehensile manipulation for dynamic aerial objects
 - Nonprehensile = when an object is not in grasp for entirely of the task

Simulation Setup

• Models from Drake and TurboSquid

Pitching

Batting

Hitting

Example of a bunt

Trajectory Optimization

Inverse Kinematics:

 $\min_{q_{PrePick}} |q_{PrePick} - q_{Initial}|_2^2$ subject to $X_{PrePick} = f_{kin}(q_{PrePick})$

Kinematic Trajectory Optimization:

 $X^{Gripper}_{initial} = X^{Gripper}_{PickDone}$ $p_{Throw}^{Gripper} = p_d$ $R_{Throw}^{Gripper}(heta) = \arccos\left(rac{-\hat{k}*ec{V_d}}{|V_d|}
ight)$ **Position** <u>Constraints</u> $R_{Throw}^{Gripper}(axis) = \left(rac{-\hat{k} imesec{V_d}}{|V_d|}
ight)$ $p_{PreThrow}^{Gripper} = p_d - T/100 * V_d$ $R_{PreThrow}^{Gripper} = R_{Throw}^{Gripper}$ $v_{Gripper}^W = v_d$ Velocity <u>Constraints</u>

Results

Pitch Distance	1 m	2 m	4 m	8 m
Position Constraints Only	0.12m	0.20m	0.33 m	0.76m
Velocity Constraints	0.074m	0.16m	0.25 m	0.57m
% Strikes	100	100	90	60

TABLE I Average Error for 10 tosses (5 m/s using two different methods of Kinematic Trajectory Optimization

Bat Swing Velocity	0.5 m/s	1 m/s	2 m/s	4 m/s
Position Constraints Only	0.031m	0.077m	0.11 m	0.19m
Velocity Constraints	0.001m	0.0042m	0.013 m	0.022m
% Hits (1 m Pitch)	30	20	40	40

TABLE II

Average Error for 10 bat swings using two different methods of Kinematic Trajectory Optimization

*As of this morning, Hit/Strike rate (up to 4m) is now 100%

Limitations

- Use of privileged information
 - Awareness of pitch trajectory
 - Implement perception algorithm
- Physics Modeling

Future Work

- Visual pose estimation
- Explore dynamics of friction
- Test trajectory optimization framework for other tasks

Thank You!