
Pruning Neural Networks with Matrix Methods

Benjamin Ebanks * 1 Yajvan Ravan * 1

Abstract
In the rapidly advancing field of deep learning,
the architecture of neural networks has grown in-
creasingly complex, featuring numerous layers
and an extensive parameter set. This complex-
ity enhances model performance by enabling the
capture of more detailed data patterns, thereby
increasing accuracy. However, it also introduces
challenges such as parameter redundancy and re-
duced model interpretability. To address these
issues, neural network pruning has emerged as an
effective solution. Pruning simplifies these net-
works by eliminating superfluous weights, thereby
streamlining the model without substantially di-
minishing its predictive accuracy. In this research,
we explore three prominent approximation tech-
niques for neural network pruning: low-rank ap-
proximation, principal component analysis (PCA),
and randomized numerical linear algebra. Each
method offers a distinct approach to reducing
model complexity while maintaining performance.
Our study aims to evaluate and compare the ef-
fectiveness of these techniques in the context of
neural network optimization, providing insights
into their practical applications and limitations.

1. Introduction
In this research, we delve into the application of neural net-
work pruning across a spectrum of network architectures,
namely a standard Multilayer Perceptron (MLP), and more
complex models such as DenseNet (121 layers, 8 million
parameters), ResNet (50 layers, 25 million parameters), and
AlexNet (8 layers, 60 million parameters). These models,
trained on MNIST and ImageNet datasets, provide a diverse
basis for evaluating the impacts of pruning on different ar-
chitectures that vary in depth, width, and types of layers. By
employing three distinct approximation techniques—low-
rank approximation, principal component analysis (PCA),
and randomized numerical linear algebra—we aim to scruti-
nize how each method influences key performance metrics
like accuracy and inference speed. Our hypothesis posits
that larger networks, due to their parameter redundancy, are
likely to benefit more substantially from pruning. This study

is structured to not only experimentally assess the effective-
ness of these pruning techniques but also to theoretically
analyze the resultant performance enhancements, compar-
ing these findings with empirical data to draw conclusions
about the viability and efficacy of neural network pruning
in modern AI applications.

2. Background
2.1. Linear Layer

x1

xn

...

a
(1)
1

w1
1,1w1
1,1

w1
1,nw1
1,n a

(1)
2

w1
2,1w1
2,1

w1
2,nw1
2,n

a
(1)
m

w1
m,1w1
m,1

w1
m,nw1
m,n

...

a
(2)
1

w2
1,1w2
1,1

w2
1,2w2
1,2

w2
1,mw2
1,m

a
(2)
2

w2
2,1w2
2,1

w2
2,2w2
2,2

w2
2,mw2
2,m

a
(2)
m

w2
m,1w2
m,1

w2
m,2w2
m,2

w2
m,mw2
m,m

...

a
(3)
1

w3
1,1w3
1,1

w3
1,2w3
1,2

w3
1,mw3
1,m

a
(3)
k

w3
k,1w3
k,1

w3
k,2w3
k,2

w3
k,mw3
k,m

...

input
layer

hidden layers
output
layer

Figure 1. Illustration of multiple linear network layers

The architecture of a very basic fully connected linear net-
work is depicted in Figure 1. The input is 1 × n vector
x = [x1, . . . , xn]

T . The first layer, with m hidden units
takes x and turns it into a1, where a1 = [a11, . . . , a

1
m] and

a1i =
∑n

j=1 wi,jxj , where wa,b are learnable weights. We
can succinctly write this in matrix notation as

a1 = W 1x

where

W 1 =

w1
1,1 . . . w1

1,n
...

. . .
w1

m,1 w1
m,n


Likewise, we can write a2 = W 2a1 = W 2W 1x and so on.

1



Pruning Neural Networks with Matrix Methods

input image
or input feature map output feature maps

Figure 2. Illustration of a single convolutional layer. The input
image (if l = 1) or a feature map of the previous layer is convolved
by different filters to yield the output feature maps of layer l.

A full linear layer also adds biases and non-linear activation
function f such that

a1 = f(W 1x+ b1)

where a1, b1 ∈ Rm, x ∈ Rn and W1 ∈ Rm×n. Finally,
stacking many of these linear layers gives us a complete
fully connected neural network.

2.2. Convolutional Layer

For processing images, convolutional layers have proved to
be quite effective. A simple convolutional layer across a
single channel image is depicted in Figure 2. Typically an
image I of size (1×Hin×Win), is convolved with a single
kernel of size (k, k), with stride S (denoting the number of
pixels to skip each operation) and padding P to produce a
feature map A of size (1×Hout ×Wout) where

Wout =
Win −K + 2P

S
+ 1

Hout =
Hin −K + 2P

S
+ 1

We denote the convolution as

A = K ∗ I

For multichannel images I of (Cin ×Hin ×Win), we use
Cin kernels of size (k, k) for each channel to produce fea-
ture map A of size (1×Hout ×Wout) such that

A =

Cin∑
i=1

Ki ∗ Ii

Finally, to produce multiple feature maps, we use Cout×Cin

kernels of size (k, k) and simply stack the feature maps to
get output A of size (Cout ×Hout ×Wout)

Aj =

Cin∑
i=1

Kj,i ∗ Ii

To complete the convolutional layer, we simply add a bias
b of size (Cout ×Hout ×Wout) and activation function f
such that

Aj = f

(
Cin∑
i=1

Kj,i ∗ Ii + bj

)

2.3. Related Work

Work on neural network pruning has been done for many
years. As early as 1993, Levin et. al. proposed principal
components pruning. In that work, the authors used PCA
to prune the weights of fully connected networks. They
use a training set to compute the correlation matrix for the
input to each layer, and compute the principal components
of the output. They then delete nodes that do not increase
the validation error (Levin et al., 1993).

Recent work has also focused on pruning CNNs. In (Garg
et al., 2018), they used PCA on the feature maps generated
by a deep convolutional network to identify the optimal
number of channels for each layer of the network. In addi-
tion to identifying an optimal width, they also use this to
identiyf an optimal depth, as the depth at which the width
does not continue to increase. The authors then retrained
the network with the new architecture and demonstrated
minimal performance loss. However, this method involves
retraining, which may not necessarily be feasible and will
be computationally intensive.

In (Jaderberg et al., 2014) the authors perform low rank
approximation of filter/weight banks both spatially (in the
last two dimensions) and depthwise (in the first two dimen-
sions). Likewise, in (Denton et al., 2014), the authors use
3-D and 4-D singular value decomposition to compute low-
rank approximations of filters and show minimal increase in
error. While they find a significant improvement in model
size, they also note that practical improvements in speed are
variable due to hardware and software specifics.

In this work, we propose and compare a similar array of
methods to prune networks, inspired by the above and the
algorithms from class.

3. Methodology
We investigated 3 different methods of Neural Network
pruning, each serving a different purpose: Randomized
Matrix Multiplication, PCA, and Low-Rank Approximation.

3.1. Randomized Linear Algebra

We use randomized matrix multiplication to speed up the
computation of the matrix multiplication used in the net-
works. Namely, the randomized matrix multiplication al-
gorithm is as follows below. It takes matrix A ∈ Rm×p

where A = [A1, . . . , Ap] and B ∈ Rp×n where B =

2



Pruning Neural Networks with Matrix Methods

[B1, . . . , Bp]
T for Ai, Bi ∈ Rp, and a number of samples

c.

Algorithm 1 Randomized Matrix Multiplication

input A ∈ Rm×p, B ∈ Rp×n, c ∈ N
1: p← [A1B1, . . . , ApBp]

T

2: Draw samples (i1, . . . , ic) from {1, 2, . . . , p} such that
P [ik = j] ∝ pj

3: ApproxAB ← 0
4: k ← 1
5: while k ≤ c do
6: ApproxAB ← ApproxAB + 1

c ∗AikB
T
ik

7: k ← k + 1
8: end while

output ApproxAB

The theoretical complexity of this multiplication is O(mnc),
while the complexity of regular matrix multiplication is
O(mnp). Thus, if c << p, then theoretically, this algo-
rithm will be much faster than regular matrix multiplication.
Furthermore, as shown in class, E[ApproxAB] = AB, thus
we hypothesize that we are unlikely to lose much perfor-
mance.

To apply this algorithm to a linear layer, such as the one from
Section 2.1, we simply pass in W 1 and x to Algorithm 1
with a fixed c. We predicted that the inference time should
increase linearly as a function of c.

3.2. PCA

We also investigated the use of PCA in pruning the size
of the hidden layers of a neural network. Consider again
the network from Section 2.1. The first layer performs the
operation a1 = f(W 1x+b1), and the second layer performs
a2 = f(W 2a1 + b2) Note that the number of columns
of W 1 is fixed by the number of input features, however,
the number of rows is a choice of the model architecture.
More hidden units allow the neural network to fit to more
complex data, however, large networks may be redundant
in the features they express. We can use PCA to reduce the
dimension of the intermediate features, i.e. decrease the
number of hidden units in the hidden layers. This reduces
the dimensionality of W 1, thereby decreasing both the size
and inference speed of the model.

The algorithm is displayed in Algorithm 2

Let us dissect this using the linear network from Section 2.1
Suppose that W 1 begins at m0×m1. In order to reduce the
hidden units in the first layer, we take the trained network,
and perform SVD to decompose W 1 and then reproject it
onto a smaller latent space. Each column of W 1 encoded
the relationship between an input unit, and all of the output
units, and thus, we can treat each one as a data point with

Algorithm 2 PCA Fully Connected Network Pruning

input Trained Consecutive Layer Weights
W 1,W 2, . . . ,W k, where W i ∈ Rmi−1×mi , variance
threshold c ∈ [0, 1]

Require: mi−1 ≥ mi for all i
1: P = I
2: i← 1
3: while i ≤ k do
4: w ←Mean(W i

1,W
i
2, . . . ,W

i
mi

)
{W i

j is the j-th column of W i}
5: W ← [W i

1 − w,W i
2 − w, . . . ,W i

mi
− w]

6: UiΣiV
T
i = FullSVD(W )

7: TotalV ar ←
∑mi

j=1 σ
2
j

8: while j ≤ mi do
9: if

∑j
t=1 σ

2
t > c ∗ TotalV ar then

Break
10: end if
11: j ← j + 1
12: end while
13: P ′ ← [Ui,1, Ui,2, . . . Ui,j ]

{ Ui,j is the j-th column of Ui}
14: W i ← P ′TW iP
15: P ← P ′

16: i← i+ 1
17: end while
output W 1,W 2, . . . ,W k

output units as features. We therefore wish to maintain
as much variance between the input units with as minimal
features as possible, and thus perform PCA on the columns
of W.

We do this by computing the Singular Value Decomposi-
tion of W 1 and taking the principal components that give
the desired fraction of the total variance. This gives us a
projection matrix P ′ which essentially projects a1 onto a
lower dimensional subspace. Therefore, we must use the
inverse of P ′, which is P ′T , to also project the input space
of W 2, as seen in line 12. Then, we simply repeat for each
layer. Note that we require mi−1 ≥ mi, otherwise when
performing PCA of W i, we would have less data points
than features.

We note that the size of W i decreases drastically, by more
than a factor of 4 in some of our experiments, and this
reduces computation speed and model size drastically. Thus,
we can use this method on a pruned network to achieve
significant performance improvements.

3.3. Low-Rank Approximation

Thirdly, we used low-rank approximation to speed up the
computation of the matrix multiplication. At a high level,
consider some matrix A ∈ Rn×n. We can write A as CR

3



Pruning Neural Networks with Matrix Methods

where C ∈ Rn×r and R ∈ Rr×n where r = rank(A).
Note that for x ∈ Rn, computing Ax takes O(n2) time,
while CRx takes O(2rn) time, and likewise holds true for
the memory needed for A. Thus, for r << 2n, we find
significant speed improvement in multiplying by A.

The algorithm that we use to prune a trained network is
shown below.

Algorithm 3 Low-Rank Fully Connected Network Pruning

input Trained Consecutive Layer Weights
W 1,W 2, . . . ,W k, rank r

1: i← 1
2: while i ≤ k do
3: UiΣiV

T
i = FullSVD(W i)

4: W i
1 ← [Ui,1, Ui,2, . . . Ui,r]

5: W i
2 ← [σ1Vi,1, σ2Vi,2, . . . σkVi,r]

T

{ Ui,j is the j-th column of Ui}
6: i← i+ 1
7: end while

output W 1
1 ,W

1
2 ,W

2
1 ,W

2
2 , . . . ,W

k
1 ,W

k
2

In essence, we split each layer into two linear layers,
W i → W i

1,W
i
2, such that both have rank r. Then, we

can approximate ai = f(W iai−1 + bi) as

âi = f
(
W i

2W
i
1

(
ˆai−1
)
+ bi

)
Note that the space and multiplication time of W decreases
drastically if r is small, with the tradeoff that a very small r
may not be able to accurately capture W .

3.4. CNNs

Each of the algorithms above applies readily to any linear or
fully connected layer as depicted in Section 2.1. However,
some challenges are presented when applying it to a convo-
lutional layer, as the convolution operation is not a simple
matrix multiplication.

However, as a linear operation, convolution can in fact be
rewritten as matrix multiplication. Consider the generalized
convolutional layer from Section 2.2

Aj = f

(
Cin∑
i=1

Kj,i ∗ Ii + bj

)
We can write the convolution operation as K ′I ′, where
K ′ is the ”flattened” version of K, i.e the shape of K ′ is
(Cout×(Cin ∗k∗k)) and I ′ is a Toeplitz matrix constructed
from I . This allows us to directly apply Algorithm 1 and
Algorithm 3 to the K ′ matrix, by treating this convolutional
layer as a linear layer with weight K ′.

The application of Algorithm 2 is not as straightforward.
One cannot naively apply this algorithm, since successive

convolutional layers do not have the same input/output di-
mension of K ′ as linear layers do. Thus, instead of follow-
ing this algorithm, we implement the algorithm from (Garg
et al., 2018) and compare it to the methods above. Unlike
the methods mentioned so far, this one requires retraining,
which presents significant computational overhead.

3.5. Dataset

We used the MNIST dataset (Deng, 2012) to measure the
performance of our fully connected linear models. Each
image is 1×28×28 and contains a single handwritten digit,
and the task is to identify the digit. This essentially amounts
to multiclass classification with 10 classes.

We used the ImageNet dataset (Deng et al., 2009) to mea-
sure the performance of our CNN networks. Each image is 3
channels and the task is to classify it into one of 1000 classes.
We used the validation split, which contained 50,000 im-
ages.

3.6. Models

For fully connected networks (FCNs), we built two simple
networks with architectures described in Table 1. One of
them is very simple, while the other one is both deep and
wide, for the purpose of measuring the impact of the algo-
rithms described above. We trained both for 10 epochs on a
random 90% split of MNIST before pruning.

Network Type In Units Hidden Units Out
Units

Simple FCN 784 120, 84 10
Large FCN 784 128, 512, 2048, 8192,

2048, 512, 128
10

Table 1. Network Specification for our fully connected linear net-
works

For CNNs, we use out-of-the-box pretrained networks.
Namely, we use Alexnet (Krizhevsky et al., 2012), ResNet50
(He et al., 2015), and DenseNet121 (Huang et al., 2016).
The network architectures are detailed in Figure 3.

3.7. Implementation and Evaluation

For each of the algorithms, we implemented baselines that
such that the only difference between the baseline and the
pruning algorithm was the specific operation itself. For Al-
gorithm 1, we implemented a module that simply toggles
between performing random matrix multiplication and reg-
ular matrix multiplicaiton. For Algorithm 2, we used the
same architecture, and simply modified the weights in place.
For Algorithm 3, we implement a linear module that takes
two weights and one bias, to limit any differences between
function overheads.

4



Pruning Neural Networks with Matrix Methods

(a) AlexNet

(b) ResNet50

(c) DenseNet121

Figure 3. Network Architectures of AlexNet, ResNet50,
DenseNet121. AlexNet contains over 60 million parameters, and 5
convolutional layers. ResNet50 contains 850,000 parameters and
4 convolutional layers with kernel size greater than 1. DenseNet
contains 25 million parameters and 59 convolutional layers.

We have two primary evaluation metrics to help us quantify
the improvement with our algorithms. Firstly, we measure
accuracy (accuracy and standard deviation) on a random
set of test images from ImageNet or MNIST. Secondly, we
measure inference time (accuracy and standard deviation)
across 20 runs.

For Algorithm 1 we measure both metrics as a function of
the number of random samples we take. We expect that
the average accuracy should increase with the number of
random samples, the standard deviation should decrease,
and the inference time should increase linearly.

For Algorithm 2 we measure both metrics as a function
of the % of variance retained. We expect that the average
accuracy should increase with the variance retained, the
standard deviation should decrease, and the inference time
should also increase although perhaps not linearly.

For Algorithm 3 we measure both metrics as a function of
the rank. We expect that the average accuracy should in-
crease with the rank, the standard deviation should decrease,
and the inference time should also increase linearly.

4. Results
All of the graphs below depict the the accuracy of the modi-
fied network vs the regular network, and the bottom graphs
show the inference time. Note that inference time does not
include the time needed to compute the pruning, but simply
the speed of the pruned model compared to the speed of
the original model. Both curves contain mean accuracy and
standard deviation (shaded) across 20 trials.

4.1. Fully Connected Networks

4.1.1. RANDOMIZED MULTIPLICATION

(a) Simple FCN (b) Large FCN

Figure 4. The effect on accuracy and inference time of modifying
the FCNs with random matrix multiplication (Algorithm 1)
as a function of the number of samples used. The top graphs
show the accuracy of the randomized network (red) vs the regular
network(blue), and the bottom graphs show the inference time.

The results of modifying our Fully Connected Network
architectures with randomized matrix multiplication are
shown in Figure 4. We note two main trends. Firstly, the
accuracy increases sublinearly with the number of random
samples, and converges to the accuracy of the unmodified
network. This follows what is expected since the expected
value of random matrix multiplication is the same as the
actual multiplication.

Secondly, an interesting trend is depicted in the inference
time. For the simple FCN, we note that the inference time
of the randomized network is the same as the unmodified
network, while the inference time of the large network is
significantly smaller, slowly increasing at the end. We can
rationalize this trend, by noting that randomized multipli-
cation involves an computational overhead from drawing

5



Pruning Neural Networks with Matrix Methods

the random samples that likely increases linearly with the
number of samples. Furthermore, the number of multipli-
cations performed increases linearly with the number of
samples, so we expect the computation time to increase
similarly. Thus, it seems that for the simple network, the
computational bottleneck is not in the matrix multiplication,
since the time does not increase with the number of samples,
and the randomization worsens the time by adding overhead
of drawing samples.

However, for the large network, using randomization drasti-
cally worsens the inference time. We note that the time of
the randomized network seems to be dominated by overhead
until we reach around 1000 samples, after which the time
needed increases.The accuracy seems to not be affected.
This is most likely because the large network contains many
redundant units for this task, and thus the variance of each
random multiplication is quite low.

Thus, randomized multiplication does not seem to improve
the performance of our fully connected networks. The over-
head of drawing samples and the number of samples needed
to achieve good performance causes the inference time of
the randomized network to be significantly larger than the
unmodified network. Thus, while theoretically effective,
this method does not work well in practice.

4.1.2. PCA

(a) Simple FCN (b) Large FCN

Figure 5. The effect on accuracy and inference time of pruning
the FCNs with PCA (Algorithm 2) as a function of the fraction
of variance retained. The top graphs show the accuracy of the
randomized network (red) vs the regular network(blue), and the
bottom graphs show the inference time

The results of pruning our fully connected networks with
PCA is shown in Figure 5. We note that the accuracy in-
creases as a function of variance retained, as expected. For
the simple FCN, we do not require much variance to be
retained to achieve equal performance, while for the large
FCN, we need most of the variance retained. This is likely
because in the small FCN, the classification task is more
concentrated in each unit, while for the large FCN, the task
is more evenly split among units. We also noted that in this
case, 99% variance in the large FCN retained less than half
the units, which corresponds with many of the units being

redundant.

Furthermore, The inference time is drastically improved.
We see a similar trend in the time for the simple network as
with random multiplication. It seems that the computational
time is not bottlenecked by the size of the multiplication, and
therefore, PCA does not affect the time as much. However,
for the large network, PCA leads to substantial improve-
ments, decreasing the time by a factor of over 20. This
directly follows from the reduction in dimensionality and
multiplication size due to PCA pruning.

Thus, it seems that PCA pruning is quite effective for sub-
stantially improving model performance without a substan-
tial loss in accuracy. The theoretical effectiveness is best
realized for larger networks where multiplication is a bottle-
neck.

4.1.3. LOW-RANK APPROXIMATION

(a) Simple FCN (b) Large FCN

Figure 6. The effect on accuracy and inference time of pruning
the FCNs with the low-rank approximation (Algorithm 3) as a
function of rank used. The top graphs show the accuracy of the
randomized network (red) vs the regular network(blue), and the
bottom graphs show the inference time

The results of pruning our network with a low-rank approx-
imation is shown in Figure 6. We note that the trend in
accuracy follows what is expected. As the rank increases,
the approximation of each weight gets better, and therefore,
the accuracy increases, converging to the unpruned network.
However, we note an interesting trend, that the accuracy
seems to increase in steps, rather than smoothly as in ran-
dom multiplication or pca. This is due to the discrete sizes
of each layer. For example, for rank between 84 and 120,
our simple FCN can only be pruned in one layer, while for
ranks less than 84, we can prune multiple layers. This leads
to discontinuities in the accuracy curve, and is the reason
that the accuracy large FCN does not converge under a rank
of 1000, as the largest layer has 8192 units.

The inference time follows a similar trend as PCA. For the
simple FCN, time is not limited by the multiplication, and
as a result, we do not get a performance increase. However,
for the large network, we do get substantial performance in-
crease similar to PCA, and as expected, it increases linearly

6



Pruning Neural Networks with Matrix Methods

with rank.

Thus, it seems that low-rank approximation pruning is quite
effective for substantially improving model performance
without a substantial loss in accuracy. The theoretical effec-
tiveness is best realized for larger networks where multipli-
cation is a bottleneck.

4.2. Convolutional Networks

4.2.1. RANDOMIZED MULTIPLICATION

(a) AlexNet (b) ResNet50

Figure 7. The effect on ImageNet accuracy and inference time of
modifying AlexNet and ResNet50 with random matrix multipli-
cation (Algorithm 1) as a function of the number of samples
used. The top graphs show the accuracy of the randomized net-
work (red) vs the regular network(blue), and the bottom graphs
show the inference time

The results of applying randomization to the CNN models
is shown in Figure 7. We note that the trend in accuracy
follows the same as from Section 4.1.1 as expected. How-
ever, we note that the number of samples needed is larger
by two orders of magnitude. This is because the images
are significantly larger, and constructing the Toeplitz matrix
makes them even larger.

The trend in inference time is similar to Section 4.1.1. We
note that for ResNet50, the inference time is unaffected by
the number of samples drawn, but that it is much larger than
the unmodified network. This is likely because ResNet50
only contains 4 convolutional layers, and they are smaller
convolutions, and therefore are not likely the computational
bottleneck. As mentioned before, drawing samples adds an
overhead. AlexNet’s inference time follows the trend of the
large FCN from Section 4.1.1 for the same reason.

As DenseNet121 is more complex than AlexNet, we chose
not to perform this experiment on DenseNet121 as our com-
putational resources were constrained.

4.2.2. PCA

This method did not perform well in our initial experiments,
and thus we chose not to perform extensive experiments
with it. We trained AlexNet from scratch, performed the
channel pruning with PCA mentioned in Section 3.4, and
then retrained the pruned architecture with the same training

hyperparameters. However, the original network attained an
accuracy of 95% while the pruned architecture achieved an
accuracy of 3%.

Thus, we decided that this method was not very effective
without tweaking training hyperparameters and dealing with
the difficulties of retraining.

4.2.3. LOW-RANK APPROXIMATION

(a) AlexNet (b) ResNet50

(c) DenseNet121

Figure 8. The effect on ImageNet accuracy and inference time of
pruning AlexNet and ResNet50 with the low-rank approximation
(Algorithm 3) as a function of the rank used. The top graphs
show the accuracy of the randomized network (red) vs the regular
network(blue), and the bottom graphs show the inference time

The results of applying the low-rank approximation to all
3 CNNs is shown in Figure 8. We note that the accuracy
follows the expected trend as from Section 4.1.3. It is in-
teresting to note that the increase in accuracy as the rank
increases has high variance for AlexNet and ResNet50, most
likely due to limited number of convolutional layers, while
the accuracy curve for DenseNet 121 is much smoother.

It is interesting to note that the inference time for all of the
networks was substantially higher than the pruned networks.
One reason may be that the time necessary for loading and
unloading the GPU may be larger for pairs of matrices in
the low-rank version compared to a single matrix. Another
reason may be that computing one multiplication, due to
hardware acceleration, may simply be faster than computing
two successive lower-rank multiplications. However, it is
unclear what the reason is and will require further investiga-
tion.

Thus, it seems that this method is not particularly useful
for CNNs, due to computational overhead and practical
differences in computing power.

7



Pruning Neural Networks with Matrix Methods

5. Discussion
This study evaluated the efficacy of three neural network
pruning methods across different architectures and datasets.
Our findings revealed significant variations in the impact
of these methods based on the complexity and size of the
networks.

5.1. Effectiveness of Pruning Methods

Randomized Matrix Multiplication and Low-Rank Ap-
proximation were particularly effective in reducing model
size and computational complexity. These methods often
maintained high accuracy with significantly fewer compu-
tational resources, validating their theoretical benefits dis-
cussed earlier. However, the reduction in inference time
was not as pronounced as the reduction in size, echoing the
findings of Denton et al. (Denton et al., 2014), who noted
that practical gains in speed are not always commensurate
with theoretical improvements due to hardware and software
constraints.

PCA Pruning showed mixed results. While effective in
reducing the dimensionality and enhancing the inference
speed of large fully connected networks, its application to
convolutional neural networks (CNNs) was less successful
without additional hyperparameter tuning. This aligns with
Garg et al. (Garg et al., 2018), who achieved better results
with comprehensive model retraining—a step we did not
undertake due to our focus on methods that do not require
extensive retraining.

5.2. Network Suitability

Our results suggest that large and complex models, such
as the Large FCN and DenseNet121, benefit more from
pruning methods compared to simpler models. These net-
works, originally designed with high redundancy to capture
complex patterns, can tolerate significant reductions in com-
plexity without substantial performance loss. In contrast,
simpler models or those with fewer layers, such as the Sim-
ple FCN and ResNet50, exhibited minimal benefits from
pruning, likely due to their already optimized structure for
the tasks.

5.3. Future Directions

Given the observed discrepancies between theoretical and
practical outcomes, future research should explore several
avenues:

• Improvement of PCA Application: Investigating
methods to compute spatial or depthwise separabil-
ity in PCA without retraining could make PCA more
applicable to CNNs.

• Optimization of Pruning Techniques: Refining the
application of randomized and low-rank methods to
operate directly on the convolution operations without
unfolding could preserve spatial hierarchies and reduce
computational overhead.

• Hardware Optimizations: Developing hardware that
specifically enhances the efficiency of operations like
randomized matrix multiplication could bridge the
gap between theoretical and practical performance im-
provements.

6. Conclusion
In conclusion, while pruning techniques hold promise for
reducing neural network complexity and enhancing com-
putational efficiency, their application must be carefully
tailored to the network architecture and the specific require-
ments of the task. Future work should continue to refine
these methods and explore new ways to optimize network
pruning for emerging AI applications.

References
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,

L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Deng, L. The mnist database of handwritten digit images
for machine learning research. IEEE Signal Processing
Magazine, 29(6):141–142, 2012.

Denton, E., Zaremba, W., Bruna, J., LeCun, Y., and
Fergus, R. Exploiting linear structure within con-
volutional networks for efficient evaluation. CoRR,
abs/1404.0736, 2014. URL http://arxiv.org/
abs/1404.0736.

Garg, I., Panda, P., and Roy, K. A low effort ap-
proach to structured CNN design using PCA. CoRR,
abs/1812.06224, 2018. URL http://arxiv.org/
abs/1812.06224.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. CoRR, abs/1512.03385, 2015.
URL http://arxiv.org/abs/1512.03385.

Huang, G., Liu, Z., and Weinberger, K. Q. Densely con-
nected convolutional networks. CoRR, abs/1608.06993,
2016. URL http://arxiv.org/abs/1608.
06993.

Jaderberg, M., Vedaldi, A., and Zisserman, A. Speeding up
convolutional neural networks with low rank expansions.
CoRR, abs/1405.3866, 2014. URL http://arxiv.
org/abs/1405.3866.

8

http://arxiv.org/abs/1404.0736
http://arxiv.org/abs/1404.0736
http://arxiv.org/abs/1812.06224
http://arxiv.org/abs/1812.06224
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1405.3866
http://arxiv.org/abs/1405.3866


Pruning Neural Networks with Matrix Methods

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Ima-
genet classification with deep convolutional neural
networks. In Pereira, F., Burges, C., Bottou, L., and
Weinberger, K. (eds.), Advances in Neural Information
Processing Systems, volume 25. Curran Associates, Inc.,
2012. URL https://proceedings.neurips.
cc/paper_files/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.
pdf.

Levin, A., Leen, T., and Moody, J. Fast pruning using
principal components. In Cowan, J., Tesauro, G., and
Alspector, J. (eds.), Advances in Neural Information
Processing Systems, volume 6. Morgan-Kaufmann,
1993. URL https://proceedings.neurips.
cc/paper_files/paper/1993/file/
872488f88d1b2db54d55bc8bba2fad1b-Paper.
pdf.

9

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1993/file/872488f88d1b2db54d55bc8bba2fad1b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1993/file/872488f88d1b2db54d55bc8bba2fad1b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1993/file/872488f88d1b2db54d55bc8bba2fad1b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1993/file/872488f88d1b2db54d55bc8bba2fad1b-Paper.pdf

