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Background

- Neural Networks are the state-of-the-art 
models for tasks such as classification, 
regression, generative modeling, etc

- Most networks are very large 
- AlexNet (240Mb, 21 M parameters)
- ChatGPT (500Gb, 175 B parameters)

- Cons: High Inference Time, Need lots of compute, Limited applications in edge computing

- Pruning aims to reduce redundant parameters



Methods

Fast Post-training Pruning

- Linear layer == Matrix Multiplication,
- Convolutional Layer  ~ Matrix Multiplication

- Not quite the same but it is a linear operation
- We can approximate each operation with 

techniques from this class
- PCA for dimension reduction
- Low-rank approximation for fast multiplication
- Randomized linear algebra for fast multiplication

Linear Layer

Convolutional Layer



PCA For Dimension Reduction

- Goal: Reduce the dimensionality of intermediate features

- Expected Result: 
- Applicable for taking high dimensional input to low 

dimensional output
- Ex. Image Encoders, Image/Text Classification
- Reduce the Size & Inference Time of the network

- Procedure:
- PCA to reproject W1 to a smaller output feature space
- Preserve most of the variance between the rows of W1
- Projection matrix: PCA(W1) => P (120 x 80)
- Reproject 

- W1* = W1 * P (784 x 80)
- W2* = PT * W2 (80 x 74)

- Essentially, we have reprojected y1* = y1 * P

Input: x 
Layer 1 output: y1 
Layer 1 Weight: W1 
Layer 2 Weight: W2 
y1 = x * W1

x (1 x 784) 
y1 (1 x 120) 

W1 (784 x 120) 

W2 (120 x 84) 

Neural Network



Low-Rank Approximation

- Goal: Make Matrix Multiplication Faster

- Expected Result: 
- Inference time should be drastically reduced for 

networks with many redundant parameters

- Procedure:
- Use SVD to compute a low rank approximation of W1 
- W1 = U * V where U (784 x k) & V (k x 120), k << 120
- y1 = x * W1      ===>  y1 = x * U * V
- Computation time: 784 * 120   ===>  884 * k   

Input: x 
Layer 1 output: y1 
Layer 1 Weight: W1 
Layer 2 Weight: W2 
y1 = x * W1

x (1 x 784) 
y1 (1 x 120) 

W1 (784 x 120) 

W2 (120 x 84) 

Neural Network



Randomized Linear Algebra

- Goal: Make Matrix Multiplication Faster

- Expected Result: 
- Inference time should be drastically reduced for 

networks with many equivalent parameters

- Procedure:
- Use Random Matrix Multiplication to do multiplication 
- y1 = x * W1
- Computation: 784 * 120   ===>  120 * num_samples   

Input: x 
Layer 1 output: y1 
Layer 1 Weight: W1 
Layer 2 Weight: W2 
y1 = x * W1

x (1 x 784) 
y1 (1 x 120) 

W1 (784 x 120) 

W2 (120 x 84) 

Neural Network



Large Linear Network:

Preliminary Results

PCA:

Small Linear Network 

Hidden Units: 120, 84 Hidden Units: 128, 512, 2048, 8192, 2048, 512, 128



Preliminary Results

Large Linear Network:

Low-Rank Approximation:

Small Linear Network 

Hidden Units: 120, 84 Hidden Units: 128, 512, 2048, 8192, 2048, 512, 128
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