
Pruning Neural Networks
with Matrix Methods
Yajvan Ravan, Ben Ebanks
May 9, 2024

Background

- Neural Networks are the state-of-the-art
models for tasks such as classification,
regression, generative modeling, etc

- Most networks are very large
- AlexNet (240Mb, 21 M parameters)
- ChatGPT (500Gb, 175 B parameters)

- Cons: High Inference Time, Need lots of compute, Limited applications in edge computing

- Pruning aims to reduce redundant parameters

Methods

Fast Post-training Pruning

- Linear layer == Matrix Multiplication,
- Convolutional Layer ~ Matrix Multiplication

- Not quite the same but it is a linear operation
- We can approximate each operation with

techniques from this class
- PCA for dimension reduction
- Low-rank approximation for fast multiplication
- Randomized linear algebra for fast multiplication

Linear Layer

Convolutional Layer

PCA For Dimension Reduction

- Goal: Reduce the dimensionality of intermediate features

- Expected Result:
- Applicable for taking high dimensional input to low

dimensional output
- Ex. Image Encoders, Image/Text Classification
- Reduce the Size & Inference Time of the network

- Procedure:
- PCA to reproject W1 to a smaller output feature space
- Preserve most of the variance between the rows of W1
- Projection matrix: PCA(W1) => P (120 x 80)
- Reproject

- W1* = W1 * P (784 x 80)
- W2* = PT * W2 (80 x 74)

- Essentially, we have reprojected y1* = y1 * P

Input: x
Layer 1 output: y1
Layer 1 Weight: W1
Layer 2 Weight: W2
y1 = x * W1

x (1 x 784)
y1 (1 x 120)

W1 (784 x 120)

W2 (120 x 84)

Neural Network

Low-Rank Approximation

- Goal: Make Matrix Multiplication Faster

- Expected Result:
- Inference time should be drastically reduced for

networks with many redundant parameters

- Procedure:
- Use SVD to compute a low rank approximation of W1
- W1 = U * V where U (784 x k) & V (k x 120), k << 120
- y1 = x * W1 ===> y1 = x * U * V
- Computation time: 784 * 120 ===> 884 * k

Input: x
Layer 1 output: y1
Layer 1 Weight: W1
Layer 2 Weight: W2
y1 = x * W1

x (1 x 784)
y1 (1 x 120)

W1 (784 x 120)

W2 (120 x 84)

Neural Network

Randomized Linear Algebra

- Goal: Make Matrix Multiplication Faster

- Expected Result:
- Inference time should be drastically reduced for

networks with many equivalent parameters

- Procedure:
- Use Random Matrix Multiplication to do multiplication
- y1 = x * W1
- Computation: 784 * 120 ===> 120 * num_samples

Input: x
Layer 1 output: y1
Layer 1 Weight: W1
Layer 2 Weight: W2
y1 = x * W1

x (1 x 784)
y1 (1 x 120)

W1 (784 x 120)

W2 (120 x 84)

Neural Network

Large Linear Network:

Preliminary Results

PCA:

Small Linear Network

Hidden Units: 120, 84 Hidden Units: 128, 512, 2048, 8192, 2048, 512, 128

Preliminary Results

Large Linear Network:

Low-Rank Approximation:

Small Linear Network

Hidden Units: 120, 84 Hidden Units: 128, 512, 2048, 8192, 2048, 512, 128

References
1. Emily Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. 2014. Exploiting linear structure within

convolutional networks for efficient evaluation. In Proceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 1 (NIPS'14). MIT Press, Cambridge, MA, USA, 1269–1277.

2. Garg, I., Panda, P. and Roy, K. (2020) ‘A low effort approach to structured CNN design using PCA’, IEEE Access, 8, pp.
1347–1360. doi:10.1109/access.2019.2961960.

3. Jaderberg, M., Vedaldi, A. and Zisserman, A. (2014) ‘Speeding up convolutional neural networks with low rank expansions’,
Proceedings of the British Machine Vision Conference 2014 [Preprint]. doi:10.5244/c.28.88.

4. Levin, Asriel, Todd Leen, and John Moody. "Fast pruning using principal components." Advances in neural information
processing systems 6 (1993).

